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SOLVING GEOMETRIC PROGRAMS USING CRG-RESULTS AND COMPARISONS

By

M. Ratner, L. S. Lasdon and A. Jain

Introduction
This paper descrites the performance of a generalized reduced

gradient (GRG) algorithm in solving geometric programs. The code used,
described in [5], is a general vurpose nonlinear programming code, and
takes no advantage of the structure of geometric programs. First partial
derivatives of the objective and all constraint functions are required,
and these are computed by simple forward difference approximations. All
problem functions are expressed in power form, i.e., each term, ti’ has

the form

Problems Solved and Measures of Comparison

e geometric programs solved come from two sources: B3 pro%lems
given by D smbo in (%] and the 2k provlems of Kijckaert and Martens in [77].
Problem sizes are given in Table 1 below. The problems are good examples
of small, derce, higlily nonlinear NLP's. The problems with some negative

terms are generalized geometric programs with signomial constraints.
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TABLE 1

Problem Size

No. of No, of No. of
No. of positive negative binding constraints
constraints terms terms at optimality

D1

D2

D3
DLA,B
Dhe
D5

D6

D7
D8A,B,C

Rl
Ro
R>
RY
R5
R6
R7
R8
R9
R10
R11
R12
R13
R1L
R15
R16
R17
R18

R19
R21l
R22
R24

3

=

H
DOFWNN T OO PFWE ~N OV 000N\

2R PR
OWVWO ®WEHOOO

3 31 0 3
6 15 8 2
14 31 13 S
L 1L 2 L
5 16 0 >
6 1k 5 6
13 27 12 11
19 Lo 21 -
L 18 0 A: 2, B: 3, C: 4
2 6 0 2
1 9 0 1
1 12 0 1
3 30 0 3
3 8 0 3
7 12 0 7
7 12 0 6
7 48 0 2
1 L 1 1
1 L 2 1
2 6 1 2
L 13 2 L
6 14 5 6
6 13 2 6
7 12 3 7
7 13 3 7
9 1k 5 9
9 18 L 9
5 26 2 5
7 16 7 7
10 36 21 7
10 23 13 8
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These may have local optima which are not global (such a point was

encountered in at least one problem).

Measures of Comparison

In comparing CRG with the code used by Dembo in [2] {one of the
better special purpose GP codes) two measures were available--the final
objective value obtained and the "standard time" required to achieve that
value. Standard time is the execution time for the problem divided by
the time to execute =2 timing program written by Colville {1]. This
program inverts a 40 by 40O matrix 10 times. Use of standard time is
suppased to compensate for the effects of different computing environments,
e.g., machines, compilers, etc. To investigate this we solved U problems
on the IBM 370/168 at Stanford University using three different FORTRAN
compilers: the FORTRAN H compiler (OPT=2), the WATFIV compiler with the
CHECK option and the WATFIV compiler with the NOCHECK option. The results
appear in Table 2, which gives the times required by GR: to solve four
problems (with minimal printed output) divided by the time required to
run the timing program. There is great variation in standard times between
the three compliers, with widest wvariation (by factors of from * to 10!
between WATFIV (CHE(Y) and the FORTRAN H compilers. Evidently this
naive way of compensating for computing environment is inadequate.

To compare with the other published results, we chose the WATFIV
NOCHECK compiler, partly for convenience, partly because it gave the
median times. 1In all :RG runs there was no printing of intermediate

results, but input data and final results were printed. In
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TABLE 2

Standard Execution Times on Three FORTRAN Ccmpilers

WATFIV WATFIV IBM FORTRAN H

Problem (CHECK) (NOCHECK) (opT=2) k|

DhC 0.026 0.05%2 0.109

D5 0.025 0.0k9 0.0€9 _
) 0.005 0.012 0.033 1

R9 0.003 0.007 0.0%3

Colville Timing
Program

(IBM 370/168 4180 16. 85
c.p.u. sSeconds) : :
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problems with run times less than 1 second, even this printing may
consume a large fraction of total time.

Comparison with the Rijckaert and Martenc results is difficult,

since their starting points were chocen randomly, and were nct published.

We chose our starting values so that odd-subscripted variables were
one-half their optimal value, and even-subscripted variables were
three-halves their optimal value. The resulting points are shown in

Appendix A.

Computational Results

Table 3 shows the performance of GRG on the Demto problems or
our first attempt. Problem 1A was too badly scaled to attempt solution,
and the code failed on Problems 3, ¢ and 7. In Problems 3 and /.. GRG
terminated prematurely when no decrease in the objective was achicved
while attempting to move in the direction of steepest descent, while
in Problem 7 the program terminated short of feasibility at a local
optimum of the Phase I objective.

Improved results were obtained by using an alternative pivoting
strategy in computing the basis inverse. This strategy allowed pivoting
on matrix elements smaller thian allowed by the previous strategy if the
alternative was en’'ering a variable at a bound into the tasis. ‘his
avoided degenerate hases in some cases, and allowed solution of problem

3 and improved performance or number 5 (see Table k).
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Table 5 shows the effects of another modification to GRCG.
The code uses the BFS variable metric method to minimize the reduced
objective. The original strategy was to update the approximation, H,

to the inverse hessian used by this method only when the line seuarch

terminated in an unconstrained optimum. Otherwise it was reset to the
identity, and the search direction became the negative reduced gradient.

The new strategy used the BFS update at each iteration, except those

§
)
1
i

at which a basis change occurred. In the 5 problems of Table 5, this

new strategy was better in all problems but one, significantly better

PR s

in 3 problems. v &#

Some Dembo problems (whose feasibility tolerance specif:.:d was
tighter than lO-h) were re-run using the default feasibility tolerance
(1o'h) of the GRG code. As shown in Table 6, solutions wer obtuined
faster than with the specified tolerances (Table 3). This prompted
g the use of a coarse tolerance to obtain an initial solution, followed N
§ by a refinement using the specified tolerances. As shown in Table 7,
i this strategy yielded a significant decrease in computational effort
for Problems 8A, 8B and 8C.

The performance of GRG on the Rijckaert-Martens problems is
p i shown in Table 8. The column "Reported S.T." contains the best

standard time reported by Rijckaert and Martens [6] in a comparison

of eleven special purpose codes for geometric programming and one general f
purpose code. GRG was generally slower than the best code and missed the

true optimum by one to two percent in Problems 9, 15 and 15. Otherwise,

GRG solved all these problems satisfactorily.
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lote that ¢ is competitive or supericr fn its Uonndnrd

ki

on the larger prcoblems, 1Y thru k. Jince %11 wimes cicept tw. are

on the order of L second. the printing of come outpul by 0 wnich 4

vhese cnseg s and e

s may consume a large fractlion of ran :ime In
previougly mentioned difficulties wilk ucing ¢'andard times, .uply thnt
these comparisons must oe taken with o larce srain of salt.
An erhancement of the GK3 cole, desorited in 30, ares iadrati:
extrapolation to compute initial estimatecs of basic variables
solution of the nonlinear constraint equations in contrast to tangent

vector extrapolation !L) uged in the runs desecribed above., Some of the .

Demboand Rijckaert-Martens problems were used 1n tests to compare the
two extrapolation schemes. The results, Jdisplayed in Tables Y and 10,
(which exhibit minor discrepancies with the results in Tables 5-“ owing

to minor differences in tolerances and strategies used! show the

superiority of quadratic extrapolaticn for these problems,

Conclusions

Conclusions to bLe drawn from these experiments are;
2 "Standard time," as defined by Colville in il'!. is &n inadequate

means of compensating for different computing enviromments when

attempting to compare optimization algorithms. Improved procedures

are needed. .

sEG, representing the class of general purpose NLP algorithms, competes

well with special purpose geometric programming codes in solving

geometric programs. 3

15

A

t
L
&




: ¥ . o

TE T UL MR L ek g arn s s et

S e e ST TS T T

8080°T 6181 782 6nse 16 156 LLLS 162 899¢  T®30%
gGlL o le'1 69°2 012 S 4] c6n 61 20¢ 9Td
61.0°0 121 05°2 SQT f gl 26h g1 cle e
LOET" O 12°¢ 99°¢ SOt LL cgt 02Tl oh 0.9 gt
0090°0 10°T 1¢°1 L1 ki €6 6TH ge 612 cTy
2lg10 S1°¢ 16°¢ 9g1 9 65 oo 1 ¢sz o G
€480°0 gh°1 961 6¢1 Y Gl €8¢ 61 1¢c o
2L0C"0 L1°6 92} Lgot1 0] 80¢ 2061 2l g6¢T Ljeled
ghh0°0 L0 w2 1Tt ¢ 0s Ll 71 691 ¢a
gsho°o 9,0 H2'1 89 T 99 4ge “1 1 wa
L0100 gr o 71T 8 0 L Ly 9 i1 aa
suTy (*098)  (M-ON)/IN (IN) (aN) (on)  (Cm) stre0 ) (u) "ON
pI8epuRlS W], Owd.nm>< SUOT3BID9T saanTied ST1BD uotqoundg ST1BD ST180 WITQOoII
uoT4nOaXY uoqMoN UOMBN UOJMAN  TOMBN *ATNDY FUSTPBRIH  UOTROUNG 31597,

uotTyBTodBIXY 10309/ QUIBUBL FUIS) DHYH FO PUTWIOIIS]

6 d1dVL

PRy e e T e (2 A VI %y A 17 SIS P e




v

- . g VIR SR S T oI kb | W, T AT AR . T3 I Y e
; uo1qeT10d% I~ XT
M IO, A
: .22 L322 ¢ 12 LT Lose ) 1'R% UM ¢*12  sua3ue; WOXJ
1®i0l Ul
. uoT3onpay w
; 76230 2081 022 Ae-T L 14 006Y 5z 082 TY10L
| 491070 421 57T 161 g Gy 16T o 152 914
1 10100 AT HL* 32 ¢91 “ pee ¢en gt £6e 4 8%
Lyttt 0 Lhe fe 162 2T STH LE a5 Rq8-!
M A2GC D 63°0 %0 9} T be) 9t1e e oLt FARS
; /26T £3°0 w6 e 21 9 ol 1 AT 561 oy
' 29800 o1l 19° 1T T2t g 6L A3% 51 L12 94
v EEY A 02N 91"« enl eh gL 38N o 50T vaa
. N0 ‘0 4,70 00°e % ¢ 0% 162 71 ot 54
: IH{O 0 §L°0 1570 14 1 9¢ 39e 3T 43T vHa
LOT0"0 810 HU'T 9 o L A 7 LT X
M 2wty (*o98) (4N-DN) /IN (IN) (IN) (0N Aosd STT®D Amc, ﬁmcv *oN
m PIEDUBLG auTy, a8raany SUOTABISY] SaanTTeg STT®D uoT4oUn g STT®D ST1®D waTqoxd
} uoTANO8XY uoMaN U0 JMIN UOIMBY UuogMaN *ATINRY JUsTpPBID uotT3ouNng 1897
“ uotqerodeadixy OT3edpeny JUTsS) DYS JO SDUBWIOJISJ
i
i 01 TIavl
i

15




ALY YRR L TS ORI M, Sneamam———— ¢ IR S e i MR E R

3. Certain modifications in solution strategy can strongly affect the
performance of GRG. Among these are: when the approximate hessian
is reset, the logic used in basis inversion to decide when a variable

at bound is to enter the basis, and the order of extrapolation

o oo Ak <

(1inear or quadratic) used to obtain initial estimates of the

basic wvariables.

{

% 4, Certain parameter settings strongly affect GRG performance: in

s particular, the tolerance used to determine which constraints are

3 binding, and the tolerance used to terminate the algorithm.

% In closing, we note some things left undone but worth doing. GRG

could easily be made more convenient and efficient on geometric programs

by coding a special subroutine to compute first partial derivatives. This

; would use the fact, that if the ith term in the program is
n a,. :
ti = ci I x.iJ 5
j=1 ¢
v then 4
, Oy ucs 3
axk X,

Hence, if the terms are stored when computing the constraint and objective

3
e e s . o

! values, their partial derivatives are available with little additional
3 effort. This would reduce the time required to compute the gradient

’ .of a function from the time required in these runs kntf, where tf is ?
the time required to evaluate the function and n is the number of |

variables) to little more than tf. Special input subroutines could

16




be coded to enatle the user to specify the problem by inputting only
la) the constants cis (b) the exponent matrix a,, and (¢} which
must be coded directly. These enhancements would transform Gk. into a
"special purpose" geometric programming code.

Some additional experiments appear useful. ‘reometric programs

can be transformed into exponential form by the change of variables

which transforms the ith term into

b= oy exp\; aijyj)
J

Evaluation of ti then reguires only one transcendental computation
rather than one for each fractional aij' In addition, Yy is a free
variable (if xj has no upper bound), and the problem functions become
convex if all c; are positive. Some problems should be solved using
both forms, to see which yields smallest soluvtion times. 1In addition,
tests of GRG and some good geometric programming codes should be run on

the same computer, in order to remove the factor of standard times from

obscuring the comparisons.

terms appear in which problem functions. Currently, all problem functions
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APPENDIX A :
] Starting Values of Variables ised for the 4
f Rijckaert-Martens Problems in GKJ Runs
g
" Problem No.
A 1 b1.o, 1he,0, o1, 2.1 4
4 > Sh.t, 1207, 109.7 3
g 3 375.0, 0.17, 0.72, 5.1
1 ) 1.29, 2.75, Z.%, 1.2, 3.9, 1.95, 2.1k, 4.2, 0.5, 3.0, 7.3
| 5 21.5%, 7.0, 3%2.0, 1.7
£ 0.5, 0.3, 0.6, 1.1, £.5, 1.05, .50, 1.5
] 7 0.5, 0.3, 0.56, 1.1, 0.5, 1.09, 0.5(, 1.5 :i
) 5 0.A7, 1.5, C.4h4, 1.28, 1.57, 0.6, O.77 3
Y 0.41, #60.0 ]
10 Lh.1, 11.0, G.65 f
§ 11 L.l 1,23, 0.28, 2.6
2 12 3.2%, 1.32, 0.51, “.%, 1.11, 0.9, 0.2, &.3
; 1% £90.0, 204G, 0, 2550,0, £72.0, WA.0, 3é7.o, k3.0, 59,0 .,
f« 1k 1.00, 1415, T.Y5, 0.0y, N1k, Oy, el 2.45, oL60, o.0h -§f
: 15 0,30, 1.06, .30, 0.7, C.0%, .1k, .1, .21, G.05, 0,45 ‘
k3 16 0,27, 1.0, CL36, Ly 0.0, 0.1, 01, 6.2, 0.0%, CJ45
: 17 .0, 1l.by, 200, 000, ok, L., CLUlY, .55, CL1Y, 3.0, .23
l 16 0.2, 021, C.l, 0.90, Goi, 005, G008, .y, TLel ) plLE, d
3 1.2, .24, .17 4
19 PEOOLT L LY, AN0000 0, 1000, 0, Whneoln, SThoo, cuol, bsLe 3
(1 21 GO0, QOOC, Oy BEL, LLCOLG, LOCO 0L L, YRGS, 150.0
e 5.9y hy By UL oy Gy 0T 2 oun . &

] 24 0.4, 1.0, G.Y, C.0%, .33, .11, 1000.0, 7.0, TH0.0, .2
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